Marcando la diferencia

Control numérico (Concepto) Más tópicos del área Industrial


El Control Numérico es otra pieza importante del engranaje industrial por tal motivo, tambien lo mencionamos. ya que hemos visto otras herramientas de usos industriales. En lo que estamos describiendo todos estos meses referentes a temas que atañen al ámbito industrial. Se los encuentra en gran medida en las industrias que tienen que ver con molduras, fabricas de sellos, las que trabajan sobre relieves, y otras donde los trabajos de fabricación intervien máquinas donde las tareas de manofactura fueron reemplazadas por las del Control Númerico y el hombre pasa a desempeñar otras tareas. En las configuraciones de estas máquinas se detallan los moldes que deben aplicarse a las piezas que serán fabricadas, con información de la forma del objeto, las coodenadas x e y para objetos planos; y coordenadas x,y,z para objetos que incluyan relieves. La perfección de los trabajos y el tiempo en que son terminadas estas piezas fabricadas son algunas de las ventajas, como así tambien la utilización racional de los recursos humanos, ya que gran parte de las tareas son administradas dentro del CNC. Siga leyendo para conocer más acerca del tema, si es la primera vez que encuentra el concepto del Control Numérico que es aplicado dentro de las industrias. La labor principal se centra en indicarle a esta herramienta como debe moldear las piezas que serán fabricadas, proporcionandole todos los parámetros necesarios al dispositivo para que pueda luego ser instaladas en las líneas de producción.

 

Torno CNC DE USO INDUSTRIAL

Se considera de Control Numérico  también llamado CNC  ( Control Numérico Continuo Continuous Numerical Control) a todo dispositivo capaz de dirigir el posicionamiento de un órgano mecánico móvil mediante órdenes elaboradas de forma totalmente automática a partir de informaciones numéricas en tiempo real.

Entre las operaciones de maquinado que se pueden realizar en una máquina CNC se encuentran las de torneado y de  fresado. Sobre la base de esta combinación es posible generar la mayoría de las piezas de industria.

Este es, sin duda, uno de los sistemas que ha revolucionado la fabricación de todo tipo de objetos, tanto en la industria metalúrgica como en muchos otros ámbitos productivos.

SuPrincipio de funcionamiento

Para mecanizar una pieza se usa un sistema de coordenadas que especificarán el movimiento de la herramienta de corte.

El sistema se basa en el control de los movimientos de la herramienta de trabajo con relación a los ejes de coordenadas de la máquina, usando un programa informático ejecutado por un ordenador.

En el caso de un torno, hace falta controlar los movimientos de la herramienta en dos ejes de coordenadas: el eje de las X para los desplazamientos laterales del carro y el eje de las Z para los desplazamientos transversales de la torre.

En el caso de las fresadoreas se controlan los desplazamientos verticales, que corresponden al eje Z. Para ello se incorporan servomotores en los mecanismos de desplazamiento del carro y la torreta, en el caso de los tornos, y en la mesa en el caso de la fresadora; dependiendo de la capacidad de la maquina, esto puede no ser limitado únicamente a tres ejes.

 Aplicaciones

Gráfico aproximado en escalas logarítmicas del coste unitario de mecanización en función del número de piezas a mecanizar por lote. Máquinas tradicionales.      Máquinas de control numérico.      Máquinas especiales o de transferencia (transfert).

Aparte de aplicarse en las maquinas-herramientas para modelar metales, el CNC se usa en la fabricación de muchos otros productos de ebanistería, carpintería, etc. La aplicación de sistemas de CNC en las máquinas-herramienta han hecho aumentar enormemente la producción, al tiempo que ha hecho posible efectuar operaciones de conformado que era difícil de hacer con máquinas convencionales, por ejemplo la realización de superficies esféricas manteniendo un elevado grado de precisión dimensional. Finalmente, el uso de CNC incide favorablemente en los costos de producción al propiciar la baja de costes de fabricación de muchas máquinas, manteniendo o mejorando su calidad.

 

Programación en el control numérico

Se pueden utilizar dos métodos, la programación manual y la programación automática.

Programación manual

En este caso, el programa pieza se escribe únicamente por medio de razonamientos y cálculos que realiza un operario. El programa de mecanizado comprende todo el conjunto de datos que el control necesita para la mecanización de la pieza.

Al conjunto de informaciones que corresponde a una misma fase del mecanizado se le denomina bloque o secuencia, que se numeran para facilitar su búsqueda. Este conjunto de informaciones es interpretado por el intérprete de órdenes. Una secuencia o bloque de programa debe contener todas las funciones geométricas, funciones máquina y funciones tecnológicas del mecanizado. De tal modo, un bloque de programa consta de varias instrucciones.

El comienzo del control numérico ha estado caracterizado por un desarrollo anárquico de los códigos de programación. Cada constructor utilizaba el suyo particular. Posteriormente, se vio la necesidad de normalizar los códigos de programación como condición indispensable para que un mismo programa pudiera servir para diversas máquinas con tal de que fuesen del mismo tipo. Los caracteres más usados comúnmente, regidos bajo la norma DIN 66024 y 66025 son, entre otros, los siguientes:

  • N: es la dirección correspondiente al número de bloque o secuencia. Esta dirección va seguida normalmente de un número de tres o cuatro cifras. En el caso del formato N03, el número máximo de bloques que pueden programarse es 1000 (N000  N999).
  • X, Y, Z: son las direcciones correspondientes a las cotas según los ejes X, Y, Z de la máquina herramienta. Dichas cotas se pueden programar en forma absoluta o relativa, es decir, con respecto al cero pieza o con respecto a la última cota respectivamente.
  • G: es la dirección correspondiente a las funciones preparatorias. Se utilizan para informar al control de las características de las funciones de mecanizado, como por ejemplo, forma de la trayectoria, tipo de corrección de herramienta, parada temporizada, ciclos automáticos, programación absoluta y relativa, etc. La función G va seguida de un número de dos cifras que permite programar hasta 100 funciones preparatorias diferentes.
Ejemplos:
G00: El trayecto programado se realiza a la máxima velocidad posible, es decir, a la velocidad de desplazamiento en rápido.
G01: Los ejes se gobiernan de tal forma que la herramienta se mueve a lo largo de una línea recta.
G02:Interpolación circuloar en sentido horario.
G03: Interpolación circular en sentido antihorario.
G33: Indica ciclo automático de roscado.
G40: Cancela compensación.
G41: Compensación de corte hacia la izquierda.
G42: Compensación de corte a la derecha.
G77: Es un ciclo automático que permite programar con un único bloque el torneado de un cilindro, etc.
  • M: es la dirección correspondiente a las funciones auxiliares o complementarias. Se usan para indicar a la máquina herramienta que se deben realizar operaciones tales como parada programada, rotación del husillo a derechas o a izquierdas, cambio de útil, etc. La dirección m va seguida de un número de dos cifras que permite programar hasta 100 funciones auxiliares diferentes.
Ejemplos:
M00: Provoca una parada incondicional del programa, detiene el husillo y la refrigeración.
M01: Alto opcional.
M02: Indica el fin del programa. Se debe escribir en el último bloque del programa y posibilita la parada del control una vez ejecutadas el resto de las operaciones contenidas en el mismo bloque.
M03: Permite programar la rotación del husillo en sentido horario
M04: Permite programar la rotación del husillo en sentido antihorario, etc.

(El sentido de giro del usillo es visto por detras de la maquina, no de nuestro punto de vista como en los tornos convencionales)

M05: Parada del cabezal
M06: cambio de herramienta (con parada del programa o sin ) en las maquinas de cambio automático no conlleva la parada del programa
  • F: es la dirección correspondiente a la velocidad de avance. Va seguida de un número de cuatro cifras que indica la velocidad de avance en mm/min.
  • S es la dirección correspondiente a la velocidad de rotación del husillo principal. Se programa directamente en revoluciones por minuto, usando cuatro dígitos.
  • I, J, K son direcciones utilizadas para programar arcos de circunferencia. Cuando la interpolación se realiza en el plano X-Y, se utilizan las direcciones I y J. Análogamente, en el plano X-Z, se utilizan las direcciones I y K, y en el plano Y-Z, las direcciones J y K.
  • T es la dirección correspondiente al número de herramienta. Va seguido de un número de cuatro cifras en el cual los dos primeros indican el número de herramienta y los dos últimos el número de corrección de las mismas.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s